A hybrid recursive multilevel incomplete factorization preconditioner for solving general linear systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid recursive multilevel incomplete factorization preconditioner for solving general linear systems

In this paper we introduce an algebraic recursive multilevel incomplete factorization preconditioner, based on a distributed Schur complement formulation, for solving general linear systems. The novelty of the proposed method is to combine factorization techniques of both implicit and explicit type, recursive combinatorial algorithms, multilevel mechanisms and overlapping strategies to maximize...

متن کامل

A Multilevel Block Incomplete Cholesky Preconditioner for Solving Rectangular Sparse Matrices from Linear Least Squares Problems

An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are formed as a means to solve rectangular matrices from linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed ...

متن کامل

A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

In this paper we present a method for solving fuzzy linear systemsby two crisp linear systems. Also necessary and sufficient conditions for existenceof solution are given. Some numerical examples illustrate the efficiencyof the method.

متن کامل

A robust incomplete factorization preconditioner for positive definite matrices

We describe a novel technique for computing a sparse incomplete factorization of a general symmetric positive de nite matrix A. The factorization is not based on the Cholesky algorithm (or Gaussian elimination), but on A-orthogonalization. Thus, the incomplete factorization always exists and can be computed without any diagonal modi cation. When used in conjunction with the conjugate gradient a...

متن کامل

The flexible incomplete LU preconditioner for large nonsymmetric linear systems

The ILU factorization is one of the most popular preconditioners for the Krylov subspace method, alongside the GMRES. Properties of the preconditioner derived from the ILU factorization are relayed onto the dropping rules. Recently, Zhang et al. [Numer. Linear. Algebra. Appl., Vol. 19, pp. 555–569, 2011] proposed a Flexible incomplete Cholesky (IC) factorization for symmetric linear systems. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2016

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2015.12.007